|
INTERPOLACIÓNCOMENTARIOS ADICIONALESHay dos temas adicionales que se deben de mencionar: La interpolación con los datos igualmente espaciados y la Extrapolación. Ya que los métodos de Newton y de Lagrange son compatibles con los datos espaciados en forma arbitraria, se debe de preguntar por que se aborda el caso de los datos igualmente espaciados. Antes del advenimiento de las computadoras digitales, estos métodos tuvieron gran utilidad en la interpolación de tablas con datos igualmente espaciados. De hecho se desarrolla un esquema conocido como tabla de diferencias divididas para facilitar la implementación de estas técnicas. Sin embargo, y debido a que las fórmulas son un subconjunto de los esquemas de Newton y Lagrange compatibles con la computadora y ya que se dispone de muchas funciones tabulares como rutinas de biblioteca, la necesidad de puntos equidistantes se fue perdiendo. En particular, se puede emplear en la derivación de fórmulas de integración numérica que emplean comunmente datos equidistantes. La extrapolación es el proceso de calcular un valor de f(X) que cae fuera del rango de los puntos base conocidos X0, X1, ... , Xn. La interpolación mas exacta usualmente se obtiene cuando las incógnitas caen cerca de los puntos base. Obviamente, esto no sucede cuando las incógnitas caen fuera del rango, y por lo tanto, el error en la extrapolación puede ser muy grande. La naturaleza abierta en los extremos de la extrapolación representa un paso en la incógnita porque el proceso extiende la curva más allá de la región conocida. Como tal, la curva verdadera diverge fácilemte de la predicción. Por lo tanto, se debe tener cuidado extremo en casos donde se deba extrapolar.
|